

MEANINGS OF SPECIFIC TERMS RELATED TO THE CONCEPT OF FINITE LIMIT OF A FUNCTION AT ONE POINT

J.A. Fernández-Plaza, J.F. Ruiz-Hidalgo and L. Rico

Department of Didactics of Mathematics University of Granada-Spain

37th Conference of the International Group for the Psychology of Mathematics Education, Kiel, Germany July-August, 2013

Contents

- Problem
 - General idea
 - Goal
- 2 Background
- Method
 - Subjects
 - Instrument
- Results
 - Analysis of discussion
- Conclusions

Specific terms

"to tend"
"to approach"
"to reach"
"to exceed"

"To converge"
"to limit"

"to exceed"

"A limit is a number or point which a function cannot exceed" True or false? Explain your answer

Exploratory study

Specific terms

"to tend"

'to approach'

"to reach"

"to exceed"

"to lin

"A limit is a number or point which a function cannot exceed" True or false? Explain your answer

"It is true, because the limit is a point a function gets close infinitely but never touches"

Exploratory study

Specific terms

"to tend"

'to approach'

"to reach"

"to exceed"
To converge

"to lim

"A limit is a number or point which a function cannot exceed" True or false? Explain your answer A student gives an answer

"It is true, because the limit is a point a function gets close infinitely but never touches"

Effective terms

"To get close infinitely" "to touch"

Goal

To describe how students define explicitly some specific terms related to the concept of limit in contrast with their mathematical meaning.

Conceptual Analysis of Specific Terms

Conceptual Analysis of a term is a procedure to identify uses and meanings of that term within a specific research in mathematics education or mathematics, in contrast with those from:

- researchers from the same field
- different scientific fields
- everyday life or own students and teachers

Conceptual Analysis of Specific Terms

Conceptual Analysis of a term is a procedure to identify uses and meanings of that term within a specific research in mathematics education or mathematics, in contrast with those from:

- researchers from the same field
- different scientific fields
- everyday life or own students and teachers

Conceptual Analysis of Specific Terms

Conceptual Analysis of a term is a procedure to identify uses and meanings of that term within a specific research in mathematics education or mathematics, in contrast with those from:

- researchers from the same field
- different scientific fields
- everyday life or own students and teachers

Subjects

- 33 subjects were selected, from the previous study, a year later, who were taking the subject of Mathematics.
- The students were studying the second year of non-compulsory secondary education (Bachillerato), 17-18 years old.
- They were chosen deliberately and based on their availability.

Subjects

- 33 subjects were selected, from the previous study, a year later, who were taking the subject of Mathematics.
- The students were studying the second year of non-compulsory secondary education (Bachillerato), 17-18 years old.
- They were chosen deliberately and based on their availability.

Subjects

- 33 subjects were selected, from the previous study, a year later, who were taking the subject of Mathematics.
- The students were studying the second year of non-compulsory secondary education (Bachillerato), 17-18 years old.
- They were chosen deliberately and based on their availability.

- A semistructured interview was conducted in an ordinary classroom.
- The implementation protocol was a previous request to the students to write their answers on the answer sheet.
- A later discussion of responses that was audio recorded.
- The subjects were organised into nine groups with 3-5 components, in order to facilitate the interaction between the subjects and the researcher.

- A semistructured interview was conducted in an ordinary classroom.
- The implementation protocol was a previous request to the students to write their answers on the answer sheet.
- A later discussion of responses that was audio recorded.
- The subjects were organised into nine groups with 3-5 components, in order to facilitate the interaction between the subjects and the researcher.

- A semistructured interview was conducted in an ordinary classroom.
- The implementation protocol was a previous request to the students to write their answers on the answer sheet.
- A later discussion of responses that was audio recorded.
- The subjects were organised into nine groups with 3-5 components, in order to facilitate the interaction between the subjects and the researcher.

- A semistructured interview was conducted in an ordinary classroom.
- The implementation protocol was a previous request to the students to write their answers on the answer sheet.
- A later discussion of responses that was audio recorded.
- The subjects were organised into nine groups with 3-5 components, in order to facilitate the interaction between the subjects and the researcher.

Pre-interview

This is the only question to answer, before discussion, for 15 minutes:

Questior

Describe in each gap how you understand the following terms: "to approach," "to tend," "to reach," "to exceed," and "to converge" in the context of finite limit of a function at a point.

Pre-interview

This is the only question to answer, before discussion, for 15 minutes:

Question

Describe in each gap how you understand the following terms: "to approach," "to tend," "to reach," "to exceed," and "to converge" in the context of finite limit of a function at a point.

Interview

- In order to help the students to better express their ideas and to provoke new ones, the researcher included some examples or situations.
- For example, in the case of the terms "to reach," "to exceed" and "to converge" we provided examples of graphs.

Interview

- In order to help the students to better express their ideas and to provoke new ones, the researcher included some examples or situations.
- For example, in the case of the terms "to reach," "to exceed" and "to converge" we provided examples of graphs.

Analysis of discussion

From the analysis of discussion, the main thing is the existence of changes in the previous answers from students, both spontaneus and stimulated by the researcher.

Differences from discussion

Reachability of the limit:

I think that when a function tends can touch the number and when it approaches not. Because "to tend" can attain a concrete number, and "to approach" can be it is near that value.

Differences from discussion

Different behaviour with errors of approximation:

The difference between 3 and 2.999999 [to tend] is less than that one between 4 and 2.999999 [to approach].

Differences from discussion

closeness versus orientation:

"To approach" is as close as possible, and "to tend" is to go in a direction but it does not have to be so close.

Differences from discussion

Technical usage:

I think that "to tend" is more suitable for x-values, and "to approach" would be the function, the image.

Differences from discussion

Intentionality:

I think that "to approach" is intentioned, you want to go toward there, and "to tend" is at random.

New aspects of meaning of "to reach" and "to exceed"

New aspects of meaning of "to reach"

• "to be reached" as different from "to be reachable":

If the limit is "reached," I understand the same value, but at different points. But if the limit is "reachable," I think about a "small function". ["small function" is used to focus on a small neighbourhood of the point x=a]

New aspects of meaning of "to reach" and "to exceed"

New aspects of meaning of "to exceed"

Function must be monotone :

I think that it exceeds because it follows the same trajectory.

New aspects of meaning of "to reach" and "to exceed"

New aspects of meaning of "to exceed"

Local character of exceedability :

I don't know. I think that it is not exceedable, because it would be a relative maximum and at this point there aren't bigger values.

Conclusions

C1. Most of definitions of the specific terms provided by students are coherent with their colloquial and everyday uses, except "to tend", whose technical use in mathematics is relevant.

Specific terms	Meanings	Frequencies (N=33)
To Tend	B1. To approach	9
	B1.1. Not to reach the limit B1.2. To approach <i>more and</i>	more 3
	B2. Technical usage	8
	B4. Other/No answer	7

Conclusions

C2. Specific terms "to approach" and "to tend" were widely differentiated in written records (only 9 out of 33-7=26 valid answers considered these terms equivalent)

Specific terms	Meanings	Frequencies (N=33)
	B1. To approach	9
To Tend		
	B4. Other/No answer	7

Problem
Background
Method
Results
Conclusions

Conclusions

- C3. From discussion, students were able to establish other differences between "to approach" and "to tend".
- C4. From discussion, students were able to explain better their conceptions about reachable limit and exceedable limit, in fact, their previous answers were very imprecise.

Problem
Background
Method
Results
Conclusions

Conclusions

- C3. From discussion, students were able to establish other differences between "to approach" and "to tend".
- C4. From discussion, students were able to explain better their conceptions about reachable limit and exceedable limit, in fact, their previous answers were very imprecise.

Conclusions

C5. The specific term "to converge" was at the beginning unknown for students, but by appropriate stimuli, students could provide alternative definitions.

Specific terms	Meanings F	requencies (N=33)
To converge	E3. To tend	1
	E5. The right and left-hand limits are the same	3
	E7. Two functions or straight lines intersect at a point	9
	E8. Other/No answer	14

MEANINGS OF SPECIFIC TERMS RELATED TO THE CONCEPT OF FINITE LIMIT OF A FUNCTION AT ONE POINT

J.A. Fernández-Plaza, J.F. Ruiz-Hidalgo and L. Rico

Department of Didactics of Mathematics University of Granada-Spain

37th Conference of the International Group for the Psychology of Mathematics Education, Kiel, Germany July-August, 2013